
Driving Digital Success

www.bluealtair.com 

New Trends in API Architecture 
GraphQL & gRPC
By Aashish Pathak
Director, API Management & Integration, Blue Altair

API
Clients

REST

/videos
/videos/{id}

GraphQL

/graphAPI?query=
{videos{id
summary}}

Web Socket

API Gateway

GraphQL Server

Service 1

Service 2

Service 3

Service 4

gRPC

gRPC

Backend Services

SOAP

Legacy Service

Datastore

Effective communication defines the success of the business and in this ever-
changing digital world, API is acting as the backbone of the interaction among 
systems. While REST APIs have served well for long time, modern day challenges 
and complexities require efficient and high performing solutions.

In this blog post, I will delve into two such effective API architectures: GraphQL 
and gRPC. These technologies offer more flexibility, speed, and control than 
traditional REST APIs, making them powerful tools for building scalable and 
responsive applications. Also, I will dive into their use cases, benefits, limitations, 
and where they fit best in today’s API landscape.

Evolution of API Architectures
Rise of RESTful APIs

Representative State Transfer (REST) has become the dominant API architecture 
style, characterized by its use of standard HTTP methods and stateless 
communication, and has increased in popularity due to its simplicity, scalability, 
and ease of integration. However, in a short time, applications have become more 
complex, resulting in RESTful APIs facing challenges such as over-fetching and 
under-fetching, lack of flexibility in browsing structure, and difficulty in 
developing APIs without disrupting existing clients.

Figure 1



www.bluealtair.com 

Emergence of New API Paradigm

The emergence of GraphQL addresses these limitations 
by allowing customers to clearly specify what information 
is required in a request. For example, a news aggregation 
application might use GraphQL to pull only news headlines 
and summaries without loading them. This results in more 
efficient data recovery and application performance. 

One of the most powerful features of GraphQL is its ability 
to manage real-time data updates using subscriptions. This 
makes it ideal for applications that require live updates, 
such as chat platforms, sports apps displaying live scores, 
or stock market dashboards showing real-time price 
changes. For example, Shopify’s GraphQL API leverages 
this capability to deliver dynamic updates efficiently. Figure 
2 is a sample of a GraphQL request and response from the 
Shopify API.

On the other hand, gRPC uses Protocol Buffers (Protobuf) 
for efficient data serialization. Because it is a binary 
protocol, it has high performance and low latency. This 
makes it suitable for microservice architectures. Video 
streaming applications such as Netflix typically use 
gRPC to ensure minimal latency and high reliability. 
Bi-directional streaming and built-in authentication 
make IoT [Internet of Things] applications and real-time 
collaborative devices more attractive. With the overall 
shift towards microservices architecture, both GraphQL 
and gRPC meet the increasing demand for real-time data 
processing and efficient communication. It addresses the 
performance bottleneck of traditional RESTful APIs.

Trends and Future Directions

Both GraphQL and gRPC are experiencing important developments and trends that are shaping the future. 
Tracking trends reflect the search for efficiency, scalability, and a continuously improved developer and user 
experience. 

Trends in GraphQL
Federated GraphQL

In a Federated GraphQL, a single large GraphQL schema is split into multiple smaller schemas that are 
managed by different teams or services. Companies are increasingly turning to Federated GraphQL to 
manage their apps. For complex and large-scale apps, Apollo Federation is a popular implementation 
tool, that allows the composition of multiple GraphQL services in a single unified API.

GraphQL Mesh

GraphQL Mesh allows GraphQL to be used as a universal data layer by combining multiple APIs 
including REST, gRPC, SOAP, etc. into a single GraphQL schema. This trend is gaining traction as it 
simplifies the integration of diverse and legacy systems into modern applications.

Figure 2



Trends in gRPC

gRPC in Microservices

There is a growing trend to use gRPC for inter-service communication in microservices environments. 
To replace the traditional RESTful approach, organizations with large microservices deployments, such 
as Uber and Netflix, are leveraging gRPC to improve communication between services.

www.bluealtair.com 

Enhanced tooling and ecosystem

Expect more advanced tools for plan management, auditing, and security. Projects like GraphQL 
Inspector and Apollo Studio are leading the way in providing a robust GraphQL ecosystem of tools. 
Projects like OpenTelemetry and Envoy Proxy enhance the gRPC ecosystem.

AI and ML Integration

Both technologies will have improved integration with AI and machine learning frameworks, to 
support intelligent data and query processing. This integration will enable more powerful and 
advanced data-driven applications.

Edge Computing and IoT

Both technologies will play a key role in the growth of Edge Computing and IoT, providing efficient 
and scalable solutions for real-time data collection, processing, and communication in distributed 
networks.

Future of GraphQL and gRPC

GraphQL Subscriptions and Real-Time Data

As real-time applications continue to grow in popularity, GraphQL subscriptions are increasingly being 
adopted for use cases like chat applications, live sports updates, and collaborative tools. By leveraging 
WebSockets, subscriptions enable seamless real-time data updates. Frameworks such as Apollo and 
Hasura have made it easier for companies to integrate these real-time capabilities into their systems, 
driving broader adoption of GraphQL for dynamic, event-driven experiences.

Challenges and Considerations
Although GraphQL and gRPC offer powerful capabilities for modern applications, they also come with unique 
challenges that developers need to solve.

Challenges with GraphQL

Designing comprehensive and 
effective GraphQL services can 
be complex. This is especially 
true for large applications with 
diverse data needs.

GraphQL APIs may be 
vulnerable to security issues, 
such as Denial-of-Service 
(DoS) attacks, information 
disclosure, and unauthorized 
access.

GraphQL’s flexibility can 
sometimes cause performance 
overhead especially for solving 
complex query problems that 
require views of multiple data 
sources.



Challenges with gRPC

Integrating gRPC into existing 
systems. Especially systems 
that use different protocols or 
data formats.

Considerations to Overcome Challenges

gRPC’s use of Protocol 
Buffers (Protobuf) can be 
more complex to understand 
compared to REST RPC-
based communication models.

Web browsers do not directly 
support gRPC natively. 
Thus, limiting its use in web 
applications.

Create API Governance practices, including code 
reviews, management plans, and documentation 
standards. Use tools like GraphQL SDL to 
document Swagger/OpenAPI.

Follow a planning-based design approach to 
ensure clarity and consistency in design.

Implement an effective certification 
authorization mechanism. Consider using 
rate limiting Depth restriction and limiting 
complexity to reduce DoS attacks. 

Use an API gateway that can switch between 
gRPC and other protocols such as REST or 
SOAP.

Leverage existing tools such as Apollo Studio, GraphQL Playground, and GraphQL Inspector for 
GraphQL. Use additional or enhanced tools such as Reflection, gRPC, Envoy, and OpenTelemetry to 
improve observability for gRPC services.

www.bluealtair.com 

Conclusion
Both technologies come with their own challenges and considerations. Schema complexity, safety concerns 
and the operating costs of GraphQL require careful planning and optimization. With a steep learning curve 
and limited browser support, the complexity of debugging gRPC requires a focus on training, creating tools, 
and best practices. 

In summary, choosing between GraphQL and gRPC or a combination thereof depends on the specific 
requirements of your application and infrastructure. By understanding the strengths, challenges, and future 
directions, developers can make data-driven decisions by leveraging these technologies to create powerful, 
scalable, and innovative APIs. Now more than ever, it is important that enterprise organizations incorporate 
modern API architectures that are robust and future-proof to support the increasingly interconnected digital 
landscape of tomorrow.



www.bluealtair.com Driving Digital Success

© 2025 Blue Altair

About Blue Altair
Blue Altair is a niche, industry-recognized business and technology consulting 
firm that assists our clients with digital transformations. We offer Assessment and 
Strategy, Technology Implementation, and Managed Services in API Management 
and Integration; Data Management; Digital Application Development; and Data 
Science and AI. Our Client Success capability ensures a higher-than-industry rate 
of successfully delivered projects, with a primary focus on program and project 
management, business analysis, and quality assurance. Blue Labs is our innovation 
hub, where we use cutting-edge technology to build offerings that deliver 
accelerators and solutions. Our culture is the heart of our existence, and our core 
values are the key drivers for our handpicked, top-tier performers.

About the Author
Aashish is the Director of API Management & 
Integration capability at Blue Altair. With more 
than 13 years of experience in solutioning and 
software development, Aashish has a strong 
track record of delivering successful API and 
integration projects across multiple industries.




